
Algorithms Illuminated
Part 3: Greedy Algorithms and Dynamic

Programming

Tim Roughgarden

c� 2019 by Tim Roughgarden

All rights reserved. No portion of this book may be reproduced in any form
without permission from the publisher, except as permitted by U. S. copyright
law.

Second Printing, 2021

First Edition

Cover image: Untitled, by Johanna Dickson

ISBN: 978-0-9992829-4-6 (Paperback)
ISBN: 978-0-9992829-5-3 (ebook)

Library of Congress Control Number: 2017914282

Soundlikeyourself Publishing, LLC
New York, NY
soundlikeyourselfpublishing@gmail.com

www.algorithmsilluminated.org

www.algorithmsilluminated.org

Contents

Preface vii

13 Introduction to Greedy Algorithms 1
13.1 The Greedy Algorithm Design Paradigm 1
13.2 A Scheduling Problem 4
13.3 Developing a Greedy Algorithm 6
13.4 Proof of Correctness 12
Problems 18

14 Huffman Codes 21
14.1 Codes 21
14.2 Codes as Trees 26
14.3 Huffman’s Greedy Algorithm 30

*14.4 Proof of Correctness 39
Problems 48

15 Minimum Spanning Trees 51
15.1 Problem Definition 51
15.2 Prim’s Algorithm 56

*15.3 Speeding Up Prim’s Algorithm via Heaps 61
*15.4 Prim’s Algorithm: Proof of Correctness 68
15.5 Kruskal’s Algorithm 75

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 80
*15.7 Kruskal’s Algorithm: Proof of Correctness 90
15.8 Application: Single-Link Clustering 93
Problems 98

16 Introduction to Dynamic Programming 102
16.1 The Weighted Independent Set Problem 103
16.2 A Linear-Time Algorithm for WIS in Paths 107

v

vi Contents

16.3 A Reconstruction Algorithm 115
16.4 The Principles of Dynamic Programming 117
16.5 The Knapsack Problem 122
Problems 133

17 Advanced Dynamic Programming 137
17.1 Sequence Alignment 137

*17.2 Optimal Binary Search Trees 148
Problems 163

18 Shortest Paths Revisited 167
18.1 Shortest Paths with Negative Edge Lengths 167
18.2 The Bellman-Ford Algorithm 172
18.3 The All-Pairs Shortest Path Problem 185
18.4 The Floyd-Warshall Algorithm 187
Problems 198

Epilogue: A Field Guide to Algorithm Design 201

Hints and Solutions 203

Index 213

Preface

This book is the third in a series based on my online algorithms
courses that have been running regularly since 2012, which in turn
are based on an undergraduate course that I taught many times at
Stanford University. The first two parts of the series are not strict
prerequisites for this one, though portions of this book do assume
at least a vague recollection of big-O notation (covered in Chapter 2
of Part 1 or Appendix C of Part 2), divide-and-conquer algorithms
(Chapter 3 of Part 1), and graphs (Chapter 7 of Part 2).

What We’ll Cover

Algorithms Illuminated, Part 3 provides an introduction to and nu-
merous case studies of two fundamental algorithm design paradigms.

Greedy algorithms and applications. Greedy algorithms solve
problems by making a sequence of myopic and irrevocable decisions.
For many problems, they are easy to devise and often blazingly
fast. Most greedy algorithms are not guaranteed to be correct, but
we’ll cover several killer applications that are exceptions to this rule.
Examples include scheduling problems, optimal compression, and
minimum spanning trees of graphs.

Dynamic programming and applications. Few benefits of a se-
rious study of algorithms rival the empowerment that comes from
mastering dynamic programming. This design paradigm takes a lot of
practice to perfect, but it has countless applications to problems that
appear unsolvable using any simpler method. Our dynamic program-
ming boot camp will double as a tour of some of the paradigm’s killer
applications, including the knapsack problem, the Needleman-Wunsch
genome sequence alignment algorithm, Knuth’s algorithm for opti-

vii

viii Preface

mal binary search trees, and the Bellman-Ford and Floyd-Warshall
shortest-path algorithms.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points. The “Field Guide to Algorithm Design” on page 201
provides a bird’s-eye view of how greedy algorithms and dynamic
programming fit into the bigger algorithmic picture.

The starred sections of the book are the most advanced ones. The
time-constrained reader can skip these sections on a first reading
without any loss of continuity.

Topics covered in the other parts. Algorithms Illuminated,

Part 1 covers asymptotic notation (big-O notation and its close
cousins), divide-and-conquer algorithms and the master method, ran-
domized QuickSort and its analysis, and linear-time selection algo-
rithms. Part 2 covers data structures (heaps, balanced search trees,
hash tables, bloom filters), graph primitives (breadth- and depth-first
search, connectivity, shortest paths), and their applications (ranging
from deduplication to social network analysis). Part 4 is all about NP-
hard problems: how to recognize them in the wild (using reductions);
ways to compromise on your algorithmic ambitions for them (through
approximation or an exponential worst-case running time); and al-
gorithmic tools to realize those revised ambitions (greedy heuristic
algorithms, local search, advanced dynamic programming, MIP and
SAT solvers).

Skills You’ll Learn From This Book Series

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly
fast subroutines for processing data as well as several useful data
structures for organizing data that you can deploy directly in your own
programs. Implementing and using these algorithms will stretch and
improve your programming skills. You’ll also learn general algorithm
design paradigms that are relevant to many different problems across
different domains, as well as tools for predicting the performance of
such algorithms. These “algorithmic design patterns” can help you
come up with new algorithms for problems that arise in your own
work.

Preface ix

Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,
you’ll gain a deep understanding of the specific algorithms and data
structures that these books cover. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After you learn about algorithms, you’ll
start seeing them everywhere, whether you’re riding an elevator,
watching a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer science’s greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Different

This series of books has only one goal: to teach the basics of algorithms

in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.

There are a number of excellent more traditional textbooks about
algorithms, any of which usefully complement this book series with
additional problems and topics. I encourage you to explore and
find your own favorites. There are also several books that, unlike
these books, cater to programmers looking for ready-made algorithm
implementations in a specific programming language. Many such
implementations are freely available on the Web as well.

x Preface

Who Are You?

The whole point of these books and the online courses upon which
they are based is to be as widely and easily accessible as possible.
People of all ages, backgrounds, and walks of life are well represented
in my online courses, and there are large numbers of students (high-
school, college, etc.), software engineers (both current and aspiring),
scientists, and professionals hailing from all corners of the world.

This book is not an introduction to programming. Ideally, you’ve
already acquired basic programming skills, such as the use of arrays
and recursion, in some standard programming language (be it Java,
Python, C, Scala, Haskell, etc.). If you need to beef up your pro-
gramming skills, there are several outstanding free online courses that
teach basic programming.

We also use mathematical analysis as needed to understand how
and why algorithms really work. The freely available book Mathe-

matics for Computer Science, by Eric Lehman, F. Thomson Leighton,
and Albert R. Meyer, is an excellent and entertaining refresher on
mathematical notation (like

P
and 8), the basics of proofs (induction,

contradiction, etc.), discrete probability, and much more.

Additional Resources

These books are based on online courses that are currently running on
the Coursera and edX platforms. I’ve made several resources available
to help you replicate as much of the online course experience as you
like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available from
www.algorithmsilluminated.org. These videos cover all the topics
in this book series, as well as additional advanced topics. I hope they
exude a contagious enthusiasm for algorithms that, alas, is impossible
to replicate fully on the printed page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered
throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

www.algorithmsilluminated.org

Preface xi

End-of-chapter problems. At the end of each chapter you’ll find
several relatively straightforward questions for testing your under-
standing, followed by harder and more open-ended challenge problems.
Hints or solutions to all of these problems (as indicated by an “(H)” or
“(S),” respectively) are included at the end of the book. Readers can
interact with me and each other about the end-of-chapter problems
through the book’s discussion forum (see below).

Programming problems. Each of the chapters concludes with a
suggested programming project whose goal is to help you develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org.

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity, via
the forums available at www.algorithmsilluminated.org.

Changes Since the First Printing

The second printing of this book (July 2021) features several minor
improvements throughout the text, a handful of new end-of-chapter
problems (all with hints or solutions), and a more streamlined version
of Chapter 13.

Acknowledgments

These books would not exist without the passion and hunger supplied
by the hundreds of thousands of participants in my algorithms courses
over the years. I am particularly grateful to those who supplied
detailed feedback on an earlier draft of this book: Tonya Blust, Yuan
Cao, Carlos Guia, Jim Humelsine, Vladimir Kokshenev, Bayram
Kuliyev, and Daniel Zingaro.

www.algorithmsilluminated.org
www.algorithmsilluminated.org

xii Preface

I always appreciate suggestions and corrections from readers.
These are best communicated through the discussion forums men-
tioned above.

Tim Roughgarden
New York, NY
April 2019

Chapter 16

Introduction to Dynamic Programming

There’s no silver bullet in algorithm design, and the two algorithm
design paradigms we’ve studied so far (divide-and-conquer and greedy
algorithms) do not cover all the computational problems you will
encounter. The second half of this book will teach you a third design
paradigm: the dynamic programming paradigm. Dynamic program-
ming is a particularly empowering technique to acquire, as it often
leads to efficient solutions beyond the reach of anyone other than
serious students of algorithms.

In my experience, most people initially find dynamic programming
difficult and counterintuitive. Even more than with other design
paradigms, dynamic programming takes practice to perfect. But
dynamic programming is relatively formulaic—certainly more so than
greedy algorithms—and can be mastered with sufficient practice. This
chapter and the next two provide this practice through a half-dozen
detailed case studies, including several algorithms belonging to the
greatest hits compilation. You’ll learn how these famous algorithms
work, but even better, you’ll add to your programmer toolbox a
general and flexible algorithm design technique that you can apply
to problems that come up in your own projects. Through these case
studies, the power and flexibility of dynamic programming will become
clear—it’s a technique you simply have to know.

Pep Talk

It is totally normal to feel confused the first time
you see dynamic programming. Confusion should not
discourage you. It does not represent an intellectual
failure on your part, only an opportunity to get even
smarter.

102

16.1 The Weighted Independent Set Problem 103

16.1 The Weighted Independent Set Problem

I’m not going to tell you what dynamic programming is just yet.
Instead, we’ll devise from scratch an algorithm for a tricky and
concrete computational problem, which will force us to develop a
number of new ideas. After we’ve solved the problem, we’ll zoom out
and identify the ingredients of our solution that exemplify the general
principles of dynamic programming. Then, armed with a template
for developing dynamic programming algorithms and an example
instantiation, we’ll tackle increasingly challenging applications of the
paradigm.

16.1.1 Problem Definition

To describe the problem, let G = (V,E) be an undirected graph. An
independent set of G is a subset S ✓ V of mutually non-adjacent
vertices: for every v, w 2 S, (v, w) /2 E. Equivalently, an independent
set does not contain both endpoints of any edge of G. For example, if
vertices represent people and edges pairs of people who dislike each
other, the independent sets correspond to groups of people who all
get along. Or, if the vertices represent classes you’re thinking about
taking and there is an edge between each pair of conflicting classes, the
independent sets correspond to feasible course schedules (assuming
you can’t be in two places at once).

Quiz 16.1

How many different independent sets does a complete graph
with 5 vertices have?

How about a cycle with 5 vertices?

104 Introduction to Dynamic Programming

a) 1 and 2 (respectively)

b) 5 and 10

c) 6 and 11

d) 6 and 16

(See Section 16.1.4 for the solution and discussion.)

We can now state the weighted independent set (WIS) prob-
lem:

Problem: Weighted Independent Set (WIS)

Input: An undirected graph G = (V,E) and a nonnegative
weight wv for each vertex v 2 V .

Output: An independent set S ✓ V of G with the
maximum-possible sum

P
v2S wv of vertex weights.

An optimal solution to the WIS problem is called a maximum-weight

independent set (MWIS). For example, if vertices represent courses,
vertex weights represent units, and edges represent conflicts between
courses, the MWIS corresponds to the feasible course schedule with
the heaviest load (in units).

The WIS problem is challenging even in the super-simple case of
path graphs. For example, an input to the problem might look like
this (with vertices labeled by their weights):

1 4 4 5

This graph has 8 independent sets: the empty set, the four singleton
sets, the first and third vertices, the first and fourth vertices, and the
second and fourth vertices. The last of these has the largest total
weight of 8. The number of independent sets of a path graph grows
exponentially with the number of vertices (do you see why?), so there
is no hope of solving the problem via exhaustive search, except in the
tiniest of instances.

16.1 The Weighted Independent Set Problem 105

16.1.2 The Natural Greedy Algorithm Fails

For many computational problems, greedy algorithms are a great place
to start brainstorming. Such algorithms are usually easy to come up
with, and even when one fails to solve the problem (as is often the
case), the manner in which it fails can help you better understand
the intricacies of the problem.

For the WIS problem, perhaps the most natural greedy algorithm
is an analog of Kruskal’s algorithm: Perform a single pass over the
vertices, from best (highest weight) to worst (lowest weight), adding
a vertex to the solution-so-far as long as it doesn’t conflict with a
previously chosen vertex. Given an input graph G = (V,E) with
vertex weights, the pseudocode is:

WIS: A Greedy Approach

S := ;
sort vertices of V by weight
for each v 2 V , in nonincreasing order of weight do

if S [{v} is an independent set of G then
S := S [{v}

return S

Simple enough. But does it work?

Quiz 16.2

What is the total weight of the output of the greedy al-
gorithm when the input graph is the four-vertex path on
page 104? Is this the maximum possible?

a) 6; no

b) 6; yes

c) 8; no

d) 8; yes

(See Section 16.1.4 for the solution and discussion.)

106 Introduction to Dynamic Programming

Chapters 13–15 spoiled us with a plethora of cherry-picked correct
greedy algorithms, but don’t forget the warning back on page 3:
Greedy algorithms are usually not correct.

16.1.3 A Divide-and-Conquer Approach?

The divide-and-conquer algorithm design paradigm (Section 13.1.1)
is always worth a shot for problems in which there’s a sensible way to
break the input into smaller subproblems. For the WIS problem with
an input path graph G = (V,E), the natural high-level approach is
(ignoring the base case):

WIS: A Divide-and-Conquer Approach

G1 := first half of G
G2 := second half of G
S1 := recursively solve the WIS problem on G1

S2 := recursively solve the WIS problem on G2

combine S1, S2 into a solution S for G
return S

The devil is in the details of the combine step. Returning to our
running example:

1 4 4 5

first half second half

the first and second recursive calls return the second and third vertices
as the optimal solutions to their respective subproblems. The union
of their solutions is not an independent set due to the conflict at the
boundary between the two solutions. It’s easy to see how to defuse
such a border conflict when the input graph has only four vertices;
when it has hundreds or thousands of vertices, not so much.1

Can we do better than a greedy or divide-and-conquer algorithm?
1The problem can be solved in O(n2) time by a divide-and-conquer algorithm

that makes four recursive calls rather than two, where n is the number of vertices.
(Do you see how to do this?) Our dynamic programming algorithm for the problem
will run in O(n) time.

16.2 A Linear-Time Algorithm for WIS in Paths 107

16.1.4 Solutions to Quizzes 16.1–16.2

Solution to Quiz 16.1

Correct answer: (c). The complete graph has no non-adjacent
vertices, so every independent set has at most one vertex. Thus, there
are six independent sets: the empty set and the five singleton sets.
The cycle has the same six independent sets that the complete graph
does, plus some independent sets of size 2. (Every subset of three
or more vertices has a pair of adjacent vertices.) It has five size-2
independent sets (as you should verify), for a total of eleven.

Solution to Quiz 16.2

Correct answer: (a). The first iteration of the greedy algorithm
commits to the maximum-weight vertex, which is the third vertex
(with weight 5). This eliminates the adjacent vertices (the second
and fourth ones, both with weight 4) from further consideration. The
algorithm is then stuck selecting the first vertex and it outputs an
independent set with total weight 6. This is not optimal, as the second
and fourth vertices constitute an independent set with total weight 8.

16.2 A Linear-Time Algorithm for WIS in Paths

16.2.1 Optimal Substructure and Recurrence

To quickly solve the WIS problem in path graphs, we’ll need to up
our game. Key to our approach is the following thought experiment:
Suppose someone handed us an optimal solution on a silver platter.
What must it look like? Ideally, this thought experiment would show
that an optimal solution must be constructed in a prescribed way
from optimal solutions to smaller subproblems, thereby narrowing
down the field of candidates to a manageable number.2

More concretely, let G = (V,E) denote the n-vertex path graph
with edges (v1, v2), (v2, v3), . . . , (vn�2, vn�1), (vn�1, vn), and suppose
that each vertex vi 2 V has a nonnegative weight wi. Assume that
n � 2; otherwise, the answer is obvious. Suppose we magically knew

2There’s no circularity in performing a thought experiment about the very
object we’re trying to compute. As we’ll see, such thought experiments can light
up a trail that leads directly to an efficient algorithm.

108 Introduction to Dynamic Programming

an MWIS S ✓ V with total weight W . What can we say about it?
Here’s a tautology: S either contains the final vertex vn, or it doesn’t.
Let’s examine these cases in reverse order.

Case 1: vn /2 S. Suppose the optimal solution S happens to ex-
clude vn. Obtain the (n � 1)-vertex path graph Gn�1 from G by
plucking off the last vertex vn and the last edge (vn�1, vn). Because S
does not include the last vertex of G, it contains only vertices of Gn�1

and can be regarded as an independent set of Gn�1 (still with total
weight W). And S is not just any old independent set of Gn�1—it’s a
maximum-weight such set. For if S⇤ were an independent set of Gn�1

with total weight W ⇤ > W , then S⇤ would also constitute an inde-
pendent set of total weight W ⇤ in the larger graph G. This would
contradict the supposed optimality of S.

In other words, once you know that an MWIS excludes the last
vertex, you know exactly what it looks like: It’s an MWIS of the
smaller graph Gn�1.

Case 2: vn 2 S. Suppose S includes the last vertex vn. As an
independent set, S cannot include two consecutive vertices from the
path, so it excludes the penultimate vertex: vn�1 /2 S. Obtain the
(n� 2)-vertex path graph Gn�2 from G by plucking off the last two
vertices and edges:3

1 4 4 5

Gn-2

v1 v2 v3 v4

included in S excluded from S

Because S contains vn and Gn�2 does not, we can’t regard S as
an independent set of Gn�2. But after removing the last vertex
from S, we can: S � {vn} contains neither vn�1 nor vn and hence
can be regarded as an independent set of the smaller graph Gn�2

(with total weight W � wn). Moreover, S � {vn} must be an MWIS
3When n = 2, we interpret G0 as the empty graph (with no vertices or edges).

The only independent set of G0 is the empty set, which has total weight 0.

16.2 A Linear-Time Algorithm for WIS in Paths 109

of Gn�2. For suppose S⇤ were an independent set of Gn�2 with total
weight W ⇤ > W � wn. Because Gn�2 (and hence S⇤) excludes the
penultimate vertex vn�1, blithely adding the last vertex vn to S⇤ would
not create any conflicts, and so S⇤ [{vn} would be an independent
set of G with total weight W ⇤ + wn > (W � wn) + wn = W . This
would contradict the supposed optimality of S.

In other words, once you know that an MWIS includes the last ver-
tex, you know exactly what it looks like: It’s an MWIS of the smaller
graph Gn�2, supplemented with the final vertex vn. Summarizing,
two and only two candidates are vying to be an MWIS:

Lemma 16.1 (WIS Optimal Substructure) Let S be an MWIS

of a path graph G with n � 2 vertices. Let Gi denote the subgraph of

G comprising its first i vertices and i� 1 edges. Then, S is either:

(i) an MWIS of Gn�1; or

(ii) an MWIS of Gn�2, supplemented with G’s final vertex vn.

Lemma 16.1 singles out the only two possibilities for an MWIS, so
whichever option has larger total weight is an optimal solution. We
therefore have a recursive formula—a recurrence—for the total weight
of an MWIS:

Corollary 16.2 (WIS Recurrence) With the assumptions and no-

tation of Lemma 16.1, let Wi denote the total weight of an MWIS

of Gi. (When i = 0, interpret Wi as 0.) Then

Wn = max{Wn�1| {z }
Case 1

,Wn�2 + wn| {z }
Case 2

}.

More generally, for every i = 2, 3, . . . , n,

Wi = max{Wi�1,Wi�2 + wi}.

The more general statement in Corollary 16.2 follows by invoking the
first statement, for each i = 2, 3, . . . , n, with Gi playing the role of
the input graph G.

110 Introduction to Dynamic Programming

16.2.2 A Naive Recursive Approach

Lemma 16.1 is good news—we’ve narrowed down the field to just two
candidates for the optimal solution! So, why not try both options and
return the better of the two? This leads to the following pseudocode,
in which the graphs Gn�1 and Gn�2 are defined as before:

A Recursive Algorithm for WIS

Input: a path graph G with vertex set {v1, v2, . . . , vn}
and a nonnegative weight wi for each vertex vi.

Output: a maximum-weight independent set of G.

1 if n = 0 then // base case #1
2 return the empty set
3 if n = 1 then // base case #2
4 return {v1}
// recursion when n � 2

5 S1 := recursively compute an MWIS of Gn�1

6 S2 := recursively compute an MWIS of Gn�2

7 return S1 or S2 [{vn}, whichever has higher weight

A straightforward proof by induction shows that this algorithm is
guaranteed to compute a maximum-weight independent set.4 What
about the running time?

Quiz 16.3

What is the asymptotic running time of the recursive WIS al-
gorithm, as a function of the number n of vertices? (Choose
the strongest correct statement.)

a) O(n)

b) O(n log n)

4The proof proceeds by induction on the number n of vertices. The base
cases (n = 0, 1) are clearly correct. For the inductive step (n � 2), the inductive
hypothesis guarantees that S1 and S2 are indeed MWISs of Gn�1 and Gn�2,
respectively. Lemma 16.1 implies that the better of S1 and S2 [{vn} is an MWIS
of G, and this is the output of the algorithm.

16.2 A Linear-Time Algorithm for WIS in Paths 111

c) O(n2)

d) none of the above

(See Section 16.2.5 for the solution and discussion.)

16.2.3 Recursion with a Cache

Quiz 16.3 shows that our recursive WIS algorithm is no better than
exhaustive search. The next quiz contains the key to unlocking a
radical running time improvement. Think about it carefully before
reading the solution.

Quiz 16.4

Each of the (exponentially many) recursive calls of the
recursive WIS algorithm is responsible for computing an
MWIS of a specified input graph. Ranging over all of the
calls, how many distinct input graphs are ever considered?

a) ⇥(1)5

b) ⇥(n)

c) ⇥(n2)

d) 2⇥(n)

(See Section 16.2.5 for the solution and discussion.)

Quiz 16.4 implies that the exponential running time of our recursive
WIS algorithm stems solely from its absurd redundancy, solving the
same subproblems from scratch over, and over, and over, and over
again. Here’s an idea: The first time we solve a subproblem, why not
save the result in a cache once and for all? Then, if we encounter the

5If big-O notation is analogous to “less than or equal to,” then big-theta
notation is analogous to “equal to.” Formally, a function f(n) is ⇥(g(n)) if there
are constants c1 and c2 such that f(n) is wedged between c1 · g(n) and c2 · g(n)
for all sufficiently large n.

112 Introduction to Dynamic Programming

same subproblem later, we can look up its solution in the cache in
constant time.6

Blending caching into the pseudocode on page 110 is easy. The
results of past computations are stored in a globally visible length-
(n+1) array A, with A[i] storing an MWIS of Gi, where Gi comprises
the first i vertices and the first i� 1 edges of the original input graph
(and G0 is the empty graph). In line 6, the algorithm now first checks
whether the array A already contains the relevant solution S1; if
not, it computes S1 recursively as before and caches the result in A.
Similarly, the new version of line 7 either looks up or recursively
computes and caches S2, as needed.

Each of the n + 1 subproblems is now solved from scratch only
once. Caching surely speeds up the algorithm, but by how much?
Properly implemented, the running time drops from exponential to
linear. This dramatic speedup will be easier to see after we reformulate
our top-down recursive algorithm as a bottom-up iterative one—and
the latter is usually what you want to implement in practice, anyway.

16.2.4 An Iterative Bottom-Up Implementation

As part of figuring out how to incorporate caching into our recursive
WIS algorithm, we realized that there are exactly n + 1 relevant
subproblems, corresponding to all possible prefixes of the input graph
(Quiz 16.4).

WIS in Path Graphs: Subproblems

Compute Wi, the total weight of an MWIS of the prefix
graph Gi.

(For each i = 0, 1, 2, . . . , n.)

For now, we focus on computing the total weight of an MWIS for a
subproblem. Section 16.3 shows how to also identify the vertices of
an MWIS.

Now that we know which subproblems are the important ones,
why not cut to the chase and systematically solve them one by one?

6This technique of caching the result of a computation to avoid redoing it
later is sometimes called memoization.

16.2 A Linear-Time Algorithm for WIS in Paths 113

The solution to a subproblem depends on the solutions to two smaller
subproblems. To ensure that these two solutions are readily available,
it makes sense to work bottom-up, starting with the base cases and
building up to ever-larger subproblems.

WIS

Input: a path graph G with vertex set {v1, v2, . . . , vn}
and a nonnegative weight wi for each vertex vi.

Output: the total weight of a maximum-weight
independent set of G.

A := length-(n+ 1) array // subproblem solutions
A[0] := 0 // base case #1
A[1] := w1 // base case #2
for i := 2 to n do

// use recurrence from Corollary 16.2
A[i] := max{A[i� 1]| {z }

Case 1

, A[i� 2] + wi| {z }
Case 2

}

return A[n] // solution to largest subproblem

The length-(n+ 1) array A is indexed from 0 to n. By the time an
iteration of the main loop must compute the subproblem solution A[i],
the values A[i�1] and A[i�2] of the two relevant smaller subproblems
have already been computed in previous iterations (or in the base
cases). Thus, each loop iteration takes O(1) time, for a blazingly fast
running time of O(n).

For example, for the input graph

3 2 6 1 5 4

you should check that the final array values are:

3 3 4 9 9 14 0

0 1 2 3 4 5 6

prefix length i

At the conclusion of the WIS algorithm, each array entry A[i]
stores the total weight of an MWIS of the graph Gi that comprises

114 Introduction to Dynamic Programming

the first i vertices and i � 1 edges of the input graph. This follows
from an inductive argument similar to the one in footnote 4. The base
cases A[0] and A[1] are clearly correct. When computing A[i] with
i � 2, by induction, the values A[i� 1] and A[i� 2] are indeed the
total weights of MWISs of Gi�1 and Gi�2, respectively. Corollary 16.2
then implies that A[i] is computed correctly, as well. In the example
above, the total weight of an MWIS in the original input graph is the
value in the final array entry (14), corresponding to the independent
set consisting of the first, fourth, and sixth vertices.

Theorem 16.3 (Properties of WIS) For every path graph and non-

negative vertex weights, the WIS algorithm runs in linear time and

returns the total weight of a maximum-weight independent set.

16.2.5 Solutions to Quizzes 16.3–16.4

Solution to Quiz 16.3

Correct answer: (d). Superficially, the recursion pattern looks
similar to that of O(n log n)-time divide-and-conquer algorithms like
MergeSort, with two recursive calls followed by an easy combine step.
But there’s a big difference: The MergeSort algorithm throws away
half the input before recursing, while our recursive WIS algorithm
throws away only one or two vertices (perhaps out of thousands
or millions). Both algorithms have recursion trees with branching
factor 2.7 The former has roughly log2 n levels and, hence, only a
linear number of leaves. The latter has no leaves until levels n/2 and
later, which implies that it has at least 2n/2 leaves. (See Problem 16.4
for a sharper lower bound.) We conclude that the running time of the
recursive algorithm grows exponentially with n.

Solution to Quiz 16.4

Correct answer: (b). How does the input graph change upon
passage to a recursive call? Either one or two vertices and edges are

7Every recursive algorithm can be associated with a recursion tree, in which
the nodes of the tree correspond to all the algorithm’s recursive calls. The root of
the tree corresponds to the initial call to the algorithm (with the original input),
with one child at the next level for each of its recursive calls. The leaves at the
bottom of the tree correspond to the recursive calls that trigger a base case and
make no further recursive calls.

16.3 A Reconstruction Algorithm 115

plucked off the end of the graph. Thus, an invariant throughout the
recursion is that every recursive call is given some prefix Gi as its
input graph, where Gi denotes the first i vertices and i� 1 edges of
the original input graph (and G0 denotes the empty graph):

G2

v1 v2 v3 v4

G4

G1
G3

There are only n+1 such graphs (G0, G1, G2, . . . , Gn), where n is the
number of vertices in the input graph. Therefore, only n+ 1 distinct
subproblems ever get solved across the exponential number of different
recursive calls.

16.3 A Reconstruction Algorithm

The WIS algorithm in Section 16.2.4 computes only the weight pos-
sessed by an MWIS of a path graph, not an MWIS itself. A simple
hack is to modify the WIS algorithm so that each array entry A[i]
records both the total weight of an MWIS of the ith subproblem Gi

and the vertices of an MWIS of Gi that realizes this value.
A better approach, which saves both time and space, is to use

a postprocessing step to reconstruct an MWIS from the tracks in
the mud left by the WIS algorithm in its subproblem array A. For
starters, how do we know whether the last vertex vn of the input
graph G belongs to an MWIS? The key is again Lemma 16.1, which
states that two and only two candidates are vying to be an MWIS
of G: an MWIS of the graph Gn�1, and an MWIS of the graph Gn�2,
supplemented with vn. Which one is it? The one with larger total
weight. How do we know which one that is? Just look at the clues
left in the array A! The final values of A[n� 1] and A[n� 2] record
the total weights of MWISs of Gn�1 and Gn�2, respectively. So:

1. If A[n� 1] � A[n� 2]+wn, an MWIS of Gn�1 is also an MWIS
of Gn.

116 Introduction to Dynamic Programming

2. If A[n� 2] + wn � A[n� 1], supplementing an MWIS of Gn�2

with vn yields an MWIS of Gn.

In the first case, we know to exclude vn from our solution and can
continue the reconstruction process from vn�1. In the second case, we
know to include vn in our solution, which forces us to exclude vn�1.
The reconstruction process then resumes from vn�2.8

WIS Reconstruction

Input: the array A computed by the WIS algorithm for
a path graph G with vertex set {v1, v2, . . . , vn} and a
nonnegative weight wi for each vertex vi.

Output: a maximum-weight independent set of G.

S := ; // vertices in an MWIS
i := n
while i � 2 do

if A[i� 1] � A[i� 2] + wi then // Case 1 wins
i := i� 1 // exclude vi

else // Case 2 wins
S := S [{vi} // include vi
i := i� 2 // exclude vi�1

if i = 1 then // base case #2
S := S [{v1}

return S

WIS Reconstruction does a single backward pass over the array A
and spends O(1) time per loop iteration, so it runs in O(n) time. The
inductive proof of correctness is similar to that for the WIS algorithm
(Theorem 16.3).9

For example, for the input graph
8If there is a tie (A[n� 2] + wn = A[n� 1]), both options lead to an optimal

solution.
9The keen reader might complain that it’s wasteful to recompute comparisons

of the form A[i � 1] vs. A[i � 2] + wi, which have already been made by the
WIS algorithm. If that algorithm is modified to cache the comparison results
(in effect, remembering which case of the recurrence was used to fill in each
array entry), these results can be looked up rather than recomputed in the WIS

Reconstruction algorithm. This idea will be particularly important for some of
the harder problems studied in Chapters 17 and 18.

16.4 The Principles of Dynamic Programming 117

3 2 6 1 5 4

the WIS Reconstruction algorithm includes v6 (forcing v5’s exclu-
sion), includes v4 (forcing v3’s exclusion), excludes v2, and includes v1:

3 3 4 9 9 14

include v6
exclude v5

include v4
exclude v3

exclude v2

0

include v1

0 1 2 3 4 5 6

prefix length i

16.4 The Principles of Dynamic Programming

16.4.1 A Three-Step Recipe

Guess what? With WIS, we just designed our first dynamic program-
ming algorithm! The general dynamic programming paradigm can
be summarized by a three-step recipe. It is best understood through
examples; we have only one so far, so I encourage you to revisit this
section after we finish a few more case studies.

The Dynamic Programming Paradigm

1. Identify a relatively small collection of subproblems.

2. Show how to quickly and correctly solve “larger” sub-
problems given the solutions to “smaller” ones.

3. Show how to quickly and correctly infer the final solu-
tion from the solutions to all of the subproblems.

After these three steps are implemented, the corresponding dynamic
programming algorithm writes itself: Systematically solve all the
subproblems one by one, working from “smallest” to “largest,” and
extract the final solution from those of the subproblems.

In our solution to the WIS problem in n-vertex path graphs,
we implemented the first step by identifying a collection of n + 1
subproblems. For i = 0, 1, 2, . . . , n, the ith subproblem is to compute
the total weight of an MWIS of the graph Gi consisting of the first i

118 Introduction to Dynamic Programming

vertices and i � 1 edges of the input graph (where G0 denotes the
empty graph). There is an obvious way to order the subproblems from
“smallest” to “largest,” namely G0, G1, G2, . . . , Gn. The recurrence
in Corollary 16.2 is a formula that implements the second step by
showing how to compute the solution to the ith subproblem in O(1)
time from the solutions to the (i� 2)th and (i� 1)th subproblems.
The third step is easy: Return the solution to the largest subproblem,
which is the same as the original problem.

16.4.2 Desirable Subproblem Properties

The key that unleashes the potential of dynamic programming for
solving a problem is the identification of the right collection of sub-
problems. What properties do we want them to satisfy? Assuming we
perform at least a constant amount of work solving each subproblem,
the number of subproblems is a lower bound on the running time of our
algorithm. Thus, we’d like the number of subproblems to be as low as
possible—our WIS solution used only a linear number of subproblems,
which is usually the best-case scenario. Similarly, the time required to
solve a subproblem (given solutions to smaller subproblems) and to
infer the final solution will factor into the algorithm’s overall running
time.

For example, suppose an algorithm solves at most f(n) different
subproblems (working systematically from “smallest” to “largest”),
using at most g(n) time for each, and performs at most h(n) postpro-
cessing work to extract the final solution (where n denotes the input
size). The algorithm’s running time is then at most

f(n)|{z}
subproblems

⇥ g(n)|{z}
time per subproblem

(given previous solutions)

+ h(n)|{z}
postprocessing

. (16.1)

The three steps of the recipe call for keeping f(n), g(n), and h(n),
respectively, as small as possible. In the basic WIS algorithm, without
the WIS Reconstruction postprocessing step, we have f(n) = O(n),
g(n) = O(1), and h(n) = O(1), for an overall running time of O(n).
If we include the reconstruction step, the h(n) term jumps to O(n),
but the overall running time O(n) ⇥ O(1) + O(n) = O(n) remains
linear.

16.4 The Principles of Dynamic Programming 119

16.4.3 A Repeatable Thought Process

When devising your own dynamic programming algorithms, the heart
of the matter is figuring out the magical collection of subproblems.
After that, everything else falls into place in a fairly formulaic way.
But how would you ever come up with them? If you have a black belt
in dynamic programming, you might be able to just stare at a problem
and intuitively know what the subproblems should be. White belts,
however, still have a lot of training to do. In our case studies, rather
than plucking subproblems from the sky, we’ll carry out a thought
process that naturally leads to a collection of subproblems (as we did
for the WIS problem). This process is repeatable and you can mimic
it when you apply the dynamic programming paradigm to problems
that arise in your own projects.

The main idea is to reason about the structure of an optimal
solution, identifying the different ways it might be constructed from
optimal solutions to smaller subproblems. This thought experiment
can lead to both the identification of the relevant subproblems and a
recurrence (analogous to Corollary 16.2) that expresses the solution
of a subproblem as a function of the solutions of smaller subproblems.
A dynamic programming algorithm can then fill in an array with
subproblem solutions, proceeding from smaller to larger subproblems
and using the recurrence to compute each array entry.

16.4.4 Dynamic Programming vs. Divide-and-Conquer

Readers familiar with the divide-and-conquer algorithm design
paradigm (Section 13.1.1) might recognize some similarities to dynamic
programming, especially the latter’s top-down recursive formulation
(Sections 16.2.2–16.2.3). Both paradigms recursively solve smaller
subproblems and combine the results into a solution to the original
problem. Here are six differences between typical uses of the two
paradigms:

1. Each recursive call of a typical divide-and-conquer algorithm
commits to a single way of dividing the input into smaller
subproblems.10 Each recursive call of a dynamic programming

10For example, in the MergeSort algorithm, every recursive call divides its
input array into its left and right halves. The QuickSort algorithm invokes a

120 Introduction to Dynamic Programming

algorithm keeps its options open, considering multiple ways of
defining smaller subproblems and choosing the best of them.11

2. Because each recursive call of a dynamic programming algorithm
tries out multiple choices of smaller subproblems, subproblems
generally recur across different recursive calls; caching sub-
problem solutions is then a no-brainer optimization. In most
divide-and-conquer algorithms, all the subproblems are distinct
and there’s no point in caching their solutions.12

3. Most of the canonical applications of the divide-and-conquer
paradigm replace a straightforward polynomial-time algorithm
for a task with a faster divide-and-conquer version.13 The
killer applications of dynamic programming are polynomial-time
algorithms for optimization problems for which straightforward
solutions (like exhaustive search) require an exponential amount
of time.

4. In a divide-and-conquer algorithm, subproblems are chosen
primarily to optimize the running time; correctness often takes
care of itself.14 In dynamic programming, subproblems are
usually chosen with correctness in mind, come what may with
the running time.15

5. Relatedly, a divide-and-conquer algorithm generally recurses on
subproblems with size at most a constant fraction (like 50%)
of the input. Dynamic programming has no qualms about

partitioning subroutine to choose how to split the input array in two, and then
commits to this division for the remainder of its execution.

11For example, in the WIS algorithm, each recursive call chooses between a
subproblem with one fewer vertex and one with two fewer vertices.

12For example, in the MergeSort and QuickSort algorithms, every subproblem
corresponds to a different subarray of the input array.

13For example, the MergeSort algorithm brings the running time of sorting a
length-n array down from the straightforward bound of O(n2) to O(n log n). Other
examples include Karatsuba’s algorithm (which improves the running time of
multiplying two n-digit numbers from O(n2) to O(n1.59)) and Strassen’s algorithm
(for multiplying two n⇥ n matrices in O(n2.81) rather than O(n3) time).

14For example, the QuickSort algorithm always correctly sorts the input array,
no matter how good or bad its chosen pivot elements are.

15Our dynamic programming algorithm for the knapsack problem in Section 16.5
is a good example.

16.4 The Principles of Dynamic Programming 121

recursing on subproblems that are barely smaller than the input
(like in the WIS algorithm), if necessary for correctness.

6. The divide-and-conquer paradigm can be viewed as a special case
of dynamic programming, in which each recursive call chooses
a fixed collection of subproblems to solve recursively. As the
more sophisticated paradigm, dynamic programming applies to
a wider range of problems than divide-and-conquer, but it is
also more technically demanding to apply (at least until you’ve
had sufficient practice).

Confronted with a new problem, which paradigm should you use? If
you see a divide-and-conquer solution, by all means use it. If all your
divide-and-conquer attempts fail—and especially if they fail because
the combine step always seems to require redoing a lot of computation
from scratch—it’s time to try dynamic programming.

16.4.5 Why “Dynamic Programming”?

You might be wondering where the weird moniker “dynamic program-
ming” came from; the answer is no clearer now that we know how the
paradigm works than it was before.

The first point of confusion is the anachronistic use of the word
“programming.” In modern times it refers to coding, but back in the
1950s “programming” usually meant “planning.” (For example, it has
this meaning in the phrase “television programming.”) What about
“dynamic”? For the full story, I refer you to the father of dynamic
programming himself, Richard E. Bellman, writing about his time
working at the RAND Corporation:

The 1950’s were not good years for mathematical research.
We had a very interesting gentleman in Washington named
Wilson. He was Secretary of Defense, and he actually had
a pathological fear and hatred of the word, research. I’m
not using the term lightly; I’m using it precisely. His face
with suffuse, he would turn red, and he would get violent
if people used the term, research, in his presence. You can
imagine how he felt, then, about the term, mathematical.
The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially.

122 Introduction to Dynamic Programming

Hence, I felt I had to do something to shield Wilson and the
Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. What title, what name,
could I choose? In the first place I was interested in
planning, in decision making, in thinking. But planning,
is not a good word for various reasons. I decided therefore
to use the word, “programming.” . . . [“Dynamic”] has a
very interesting property as an adjective, and that is it’s
impossible to use the word, dynamic, in the pejorative
sense. Try thinking of some combination that will possibly
give it a pejorative meaning. It’s impossible. Thus, I
thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I
used it as an umbrella for my activities.16

16.5 The Knapsack Problem

Our second case study concerns the well-known knapsack problem.
Following the same thought process we used to develop the WIS algo-
rithm in Section 16.2, we’ll arrive at the famous dynamic programming
solution to the problem.

16.5.1 Problem Definition

An instance of the knapsack problem is specified by 2n+ 1 positive
integers, where n is the number of “items” (which are labeled arbitrarily
from 1 to n): a value vi and a size si for each item i, and a knapsack
capacity C.17 The responsibility of an algorithm is to select a subset
of the items. The total value of the items should be as large as possible
while still fitting in the knapsack, meaning their total size should be
at most C.

16Richard E. Bellman, Eye of the Hurricane: An Autobiography, World Scien-
tific, 1984, page 159.

17It’s actually not important that the item values are integers (as opposed to
arbitrary positive real numbers). It is important that the item sizes are integers,
as we’ll see in due time.

16.5 The Knapsack Problem 123

Problem: Knapsack

Input: Item values v1, v2, . . . , vn, item sizes s1, s2, . . . , sn,
and a knapsack capacity C. (All positive integers.)

Output: A subset S ✓ {1, 2, . . . , n} of items with the
maximum-possible sum

P
i2S vi of values, subject to having

total size
P

i2S si at most C.

Quiz 16.5

Consider an instance of the knapsack problem with knapsack
capacity C = 6 and four items:

Item Value Size
1 3 4
2 2 3
3 4 2
4 4 3

What is the total value of an optimal solution?

a) 6

b) 7

c) 8

d) 10

(See Section 16.5.7 for the solution and discussion.)

I could tell you a cheesy story about a knapsack-wielding burglar
who breaks into a house and wants to make off quickly with the best
pile of loot possible, but this would do a disservice to the problem,
which is actually quite fundamental. Whenever you have a scarce
resource that you want to use in the smartest way possible, you’re talk-
ing about a knapsack problem. On which goods and services should
you spend your paycheck to get the most value? Given an operating
budget and a set of job candidates with differing productivities and
requested salaries, whom should you hire? These are examples of
knapsack problems.

124 Introduction to Dynamic Programming

16.5.2 Optimal Substructure and Recurrence

To apply the dynamic programming paradigm to the knapsack prob-
lem, we must figure out the right collection of subproblems. As
with the WIS problem, we’ll arrive at them by reasoning about the
structure of optimal solutions and identifying the different ways they
can be constructed from optimal solutions to smaller subproblems.
Another deliverable of this exercise will be a recurrence for quickly
computing the solution to a subproblem from those of two smaller
subproblems.

Consider an instance of the knapsack problem with item values
v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and knapsack capacity C, and
suppose someone handed us on a silver platter an optimal solution S ✓
{1, 2, . . . , n} with total value V =

P
i2S vi. What must it look like?

As with the WIS problem, we start with a tautology: S either contains
the last item (item n) or it doesn’t.18

Case 1: n /2 S. Because the optimal solution S excludes the last
item, it can be regarded as a feasible solution (still with total value V
and total size at most C) to the smaller problem consisting of only
the first n� 1 items (and knapsack capacity C). Moreover, S must
be an optimal solution to the smaller subproblem: If there were a
solution S⇤ ✓ {1, 2, . . . , n � 1} with total size at most C and total
value greater than V , it would also constitute such a solution in the
original instance. This would contradict the supposed optimality of S.

Case 2: n 2 S. The trickier case is when the optimal solution S
makes use of the last item n. This case can occur only when sn C.
We can’t regard S as a feasible solution to a smaller problem with only
the first n� 1 items, but we can after removing item n. Is S � {n}
an optimal solution to a smaller subproblem?

18The WIS problem in path graphs is inherently sequential, with the vertices
ordered along the path. This naturally led to subproblems that correspond to
prefixes of the input. The items in the knapsack problem are not inherently
ordered, but to identify the right collection of subproblems, it’s helpful to mimic
our previous approach and pretend they’re ordered in some arbitrary way. A
“prefix” of the items then corresponds to the first i items in our arbitrary ordering
(for some i 2 {0, 1, 2, . . . , n}). Many other dynamic programming algorithms use
this same trick.

16.5 The Knapsack Problem 125

Quiz 16.6

Which of the following statements hold for the set S � {n}?
(Choose all that apply.)

a) It is an optimal solution to the subproblem consisting
of the first n� 1 items and knapsack capacity C.

b) It is an optimal solution to the subproblem consisting
of the first n� 1 items and knapsack capacity C � vn.

c) It is an optimal solution to the subproblem consisting
of the first n� 1 items and knapsack capacity C � sn.

d) It might not be feasible if the knapsack capacity is
only C � sn.

(See Section 16.5.7 for the solution and discussion.)

This case analysis shows that two and only two candidates are
vying to be an optimal knapsack solution:

Lemma 16.4 (Knapsack Optimal Substructure) Let S be an

optimal solution to a knapsack problem with n � 1 items, item val-

ues v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and knapsack capacity C.

Then, S is either:

(i) an optimal solution for the first n � 1 items with knapsack

capacity C; or

(ii) an optimal solution for the first n � 1 items with knapsack

capacity C � sn, supplemented with the last item n.

The solution in (i) is always an option for the optimal solution.
The solution in (ii) is an option if and only if sn C; in this case, sn
units of capacity are effectively reserved in advance for item n.19 The
option with the larger total value is an optimal solution, leading to
the following recurrence:

19This is analogous to, for the WIS problem in path graphs, excluding the
penultimate vertex of the graph to reserve space for the final vertex.

126 Introduction to Dynamic Programming

Corollary 16.5 (Knapsack Recurrence) With the assumptions

and notation of Lemma 16.4, let Vi,c denote the maximum total value

of a subset of the first i items with total size at most c. (When i = 0,
interpret Vi,c as 0.) For every i = 1, 2, . . . , n and c = 0, 1, 2, . . . , C,

Vi,c =

8
>>>><

>>>>:

Vi�1,c| {z }
Case 1

if si > c

max{Vi�1,c| {z }
Case 1

, Vi�1,c�si + vi| {z }
Case 2

} if si c.

Because both c and items’ sizes are integers, the residual capacity c�si
in the second case is also an integer.

16.5.3 The Subproblems

The next step is to define the collection of relevant subproblems and
solve them systematically using the recurrence identified in Corol-
lary 16.5. For now, we focus on computing the total value of an
optimal solution for each subproblem. As for the WIS problem in
path graphs, we’ll be able to reconstruct the items in an optimal
solution to the original problem from this information.

Back in the WIS problem in path graphs, we used only one param-
eter i to index subproblems, where i was the length of the prefix of the
input graph. For the knapsack problem, we can see from Lemma 16.4
and Corollary 16.5 that subproblems should be parameterized by two

indices: the length i of the prefix of available items and the available
knapsack capacity c.20 Ranging over all relevant values of the two
parameters, we obtain our subproblems:

Knapsack: Subproblems

Compute Vi,c, the total value of an optimal knapsack solution
with the first i items and knapsack capacity c.

(For each i = 0, 1, 2, . . . , n and c = 0, 1, 2, . . . , C.)

20In the WIS problem in path graphs, there’s only one dimension in which a
subproblem can get smaller (by having fewer vertices). In the knapsack problem,
there are two (by having fewer items, or less knapsack capacity).

16.5 The Knapsack Problem 127

The largest subproblem (with i = n and c = C) is exactly the same
as the original problem. Because all item sizes and the knapsack
capacity C are positive integers, and because capacity is always
reduced by the size of some item (to reserve space for it), the only
residual capacities that can ever come up are the integers between 0
and C.21

16.5.4 A Dynamic Programming Algorithm

Given the subproblems and recurrence, a dynamic programming algo-
rithm for the knapsack problem practically writes itself.

Knapsack

Input: item values v1, . . . , vn, item sizes s1, . . . , sn, and
a knapsack capacity C (all positive integers).

Output: the maximum total value of a subset
S ✓ {1, 2, . . . , n} with

P
i2S si C.

// subproblem solutions (indexed from 0)
A := (n+ 1)⇥ (C + 1) two-dimensional array
// base case (i = 0)
for c := 0 to C do

A[0][c] = 0

// systematically solve all subproblems
for i := 1 to n do

for c := 0 to C do
// use recurrence from Corollary 16.5
if si > c then

A[i][c] := A[i� 1][c]
else

A[i][c] :=
max{A[i� 1][c]| {z }

Case 1

, A[i� 1][c� si] + vi| {z }
Case 2

}

return A[n][C] // solution to largest subproblem

21Or, thinking recursively, each recursive call removes the last item and an
integer number of units of capacity. The only subproblems that can arise in this
way involve some prefix of the items and some integer residual capacity.

128 Introduction to Dynamic Programming

The array A is now two-dimensional to reflect the two indices i and c
used to parameterize the subproblems. By the time an iteration of
the double for loop must compute the subproblem solution A[i][c],
the values A[i� 1][c] and A[i� 1][c� si] of the two relevant smaller
subproblems have already been computed in the previous iteration
of the outer loop (or in the base case). We conclude that the algo-
rithm spends O(1) time solving each of the (n+ 1)(C + 1) = O(nC)
subproblems, for an overall running time of O(nC).22,23

Finally, as with WIS, the correctness of Knapsack follows by in-
duction on the number of items, with the recurrence in Corollary 16.5
used to justify the inductive step.

Theorem 16.6 (Properties of Knapsack) For every instance of

the knapsack problem, the Knapsack algorithm returns the total value

of an optimal solution and runs in O(nC) time, where n is the number

of items and C is the knapsack capacity.

16.5.5 Example

Recall the four-item example from Quiz 16.5, with C = 6:

Item Value Size
1 3 4
2 2 3
3 4 2
4 4 3

Because n = 4 and C = 6, the array A in the Knapsack algorithm
can be visualized as a table with 5 columns (corresponding to i =
0, 1, . . . , 4) and 7 rows (corresponding to c = 0, 1, . . . , 6). The final
array values are:

22In the notation of (16.1), f(n,C) = O(nC), g(n,C) = O(1), and h(n,C) =
O(1).

23The running time bound of O(nC) is impressive only if C is small, for
example, if C = O(n) or ideally even smaller. In Part 4 we’ll see the reason for the
not-so-blazingly fast running time—there is a precise sense in which the knapsack
problem is a difficult problem.

16.5 The Knapsack Problem 129

3 3 7 8 0

3 3 6 8 0

3 3 4 4 0

0 2 4 4 0

0 0 4 4 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0

1

2

3

4

5

6

prefix length i

re
si

du
al

 c
ap

ac
ity

 c

Knapsack computes these entries column by column (working left to
right), and within a column from bottom to top. To fill in an entry
of the ith column, the algorithm compares the entry immediately to
the left (corresponding to case 1) to vi plus the entry one column to
the left and si rows down (case 2). For example, for A[2][5] the better
option is to skip the second item and inherit the “3” immediately to
the left, while for A[3][5] the better option is to include the third item
and achieve 4 (for v3) plus the 2 in the entry A[2][3].

16.5.6 Reconstruction

The Knapsack algorithm computes only the total value of an optimal
solution, not the optimal solution itself. As with the WIS algorithm,
we can reconstruct an optimal solution by tracing back through the
filled-in array A. Starting from the largest subproblem in the upper-
right corner, the reconstruction algorithm checks which case of the
recurrence was used to compute A[n][C]. If it was case 1, the algorithm
omits item n and resumes reconstruction from the entry A[n� 1][C].
If it was case 2, the algorithm includes item n in its solution and
resumes reconstruction from the entry A[n� 1][C � sn].

130 Introduction to Dynamic Programming

Knapsack Reconstruction

Input: the array A computed by the Knapsack
algorithm with item values v1, v2, . . . , vn, item sizes
s1, s2, . . . , sn, and knapsack capacity C.

Output: an optimal knapsack solution.

S := ; // items in an optimal solution
c := C // remaining capacity
for i := n downto 1 do

if si c and A[i� 1][c� si] + vi � A[i� 1][c] then
S := S [{i} // Case 2 wins, include i
c := c� si // reserve space for it

// else skip i, capacity stays the same
return S

The Knapsack Reconstruction postprocessing step runs in O(n)
time (with O(1) work per iteration of the main loop), which is much
faster than the O(nC) time used to fill in the array in the Knapsack
algorithm.24

For instance, tracing back through the array from the example on
page 129 yields the optimal solution {3, 4}:

3 3 7 8 0

3 3 6 8 0

3 3 4 4 0

0 2 4 4 0

0 0 4 4 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0

1

2

3

4

5

6

include include exclude exclude

prefix length i

re
si

du
al

 c
ap

ac
ity

 c

24In the notation of (16.1), postprocessing with the Knapsack Reconstruction

algorithm increases the h(n,C) term to O(n). The overall running time O(nC)⇥
O(1) +O(n) = O(nC) remains the same.

16.5 The Knapsack Problem 131

16.5.7 Solutions to Quizzes 16.5–16.6

Solution to Quiz 16.5

Correct answer: (c). Because the knapsack capacity is 6, there is
no room to choose more than two items. The most valuable pair of
items is the third and fourth ones (with total value 8), and these fit
in the knapsack (with total size 5).

Solution to Quiz 16.6

Correct answer: (c). The most obviously false statement is (b),
which doesn’t even typecheck (C is in units of size, vn in units of
value). For example, vn could be bigger than C, in which case C � vn
is negative and meaningless. For (d), because S is feasible for the
original problem, its total size is at most C; after n is removed from S,
the total size drops to at most C � sn and, hence, S � {n} is feasible
for the reduced capacity. Answer (a) is a natural guess but is also
incorrect.25

In (c), we are effectively reserving sn units of capacity for item n’s
inclusion, which leaves a residual capacity of C � sn. S � {n} is a
feasible solution to the smaller subproblem (with knapsack capac-
ity C � sn) with total value V � vn. If there were a better solution
S⇤ ✓ {1, 2, . . . , n � 1}, with total value V ⇤ > V � vn and total size
at most C � sn, then S⇤ [{n} would have total size at most C and
total value V ⇤ + vn > (V � vn) + vn = V . This would contradict the
supposed optimality of S for the original problem.

The Upshot

P Dynamic programming follows a three-step
recipe: (i) identify a relatively small collec-
tion of subproblems; (ii) show how to quickly
solve “larger” subproblems given the solutions
to “smaller” ones; and (iii) show how to quickly
infer the final solution from the solutions to all

25For example, suppose C = 2 and consider two items, with v1 = s1 = 1 and
v2 = s2 = 2. The optimal solution S is {2}. S � {2} is the empty set, but the
only optimal solution to the subproblem consisting of the first item and knapsack
capacity 2 is {1}.

132 Introduction to Dynamic Programming

the subproblems.

P A dynamic programming algorithm that solves
at most f(n) different subproblems, using at
most g(n) time for each, and performs at
most h(n) postprocessing work to extract the
final solution runs in O(f(n) ·g(n)+h(n)) time,
where n denotes the input size.

P The right collection of subproblems and a re-
currence for systematically solving them can be
identified by reasoning about the structure of
an optimal solution and the different ways it
might be constructed from optimal solutions to
smaller subproblems.

P Typical dynamic programming algorithms fill in
an array with the values of subproblems’ solu-
tions, and then trace back through the filled-in
array to reconstruct the solution itself.

P An independent set of an undirected graph is a
subset of mutually non-adjacent vertices.

P In n-vertex path graphs, a maximum-weight
independent set can be computed using dynamic
programming in O(n) time.

P In the knapsack problem, given n items with
values and sizes and a knapsack capacity C
(all positive integers), the goal is to select the
maximum-value subset of items with total size
at most C.

P The knapsack problem can be solved using dy-
namic programming in O(nC) time.

Problems 133

Test Your Understanding

Problem 16.1 (S) Consider the input graph

3 1 2 7 6 4 5

where vertices are labeled with their weights. What are the final array
entries of the WIS algorithm from Section 16.2, and which vertices
belong to the MWIS?

Problem 16.2 (S) Consider an instance of the knapsack problem
with five items:

Item Value Size
1 1 1
2 2 3
3 3 2
4 4 5
5 5 4

and knapsack capacity C = 9. What are the final array entries of the
Knapsack algorithm from Section 16.5, and which items belong to the
optimal solution?

Problem 16.3 (H) Which of the following statements hold? (Choose
all that apply.)

a) The WIS and WIS Reconstruction algorithms of Sections 16.2
and 16.3 always return a solution that includes a maximum-
weight vertex.

b) When vertices’ weights are distinct, the WIS and WIS
Reconstruction algorithms never return a solution that in-
cludes a minimum-weight vertex.

c) If a vertex v does not belong to an MWIS of the prefix Gi

comprising the first i vertices and i� 1 edges of the input graph,
it does not belong to any MWIS of Gi+1, Gi+2, . . . , Gn either.

d) If a vertex v does not belong to an MWIS of Gi�1 or Gi, it does
not belong to any MWIS of Gi+1, Gi+2, . . . , Gn either.

134 Introduction to Dynamic Programming

Problem 16.4 (H) For the naive recursive algorithm for the WIS
problem in path graphs (Section 16.2.2), prove that the number of
leaves of its recursion tree (see footnote 7) is at least the nth Fibonacci
number, where n is the number of vertices in the input graph.26

Problem 16.5 (H) Consider the following variation of the knapsack
problem:

Problem: Double-Knapsack

Input: Item values v1, v2, . . . , vn, item sizes s1, s2, . . . , sn,
and capacities C1 and C2 of two knapsacks. (All positive
integers.)

Output: Two disjoint subsets S1, S2 ✓ {1, 2, . . . , n} of
items with the maximum-possible total value

P
i2S1[S2

vi,
subject to

P
i2S1

si C1 and
P

i2S2
si C2.

Here are two possible algorithmic approaches:

(1) Use the Knapsack algorithm from Section 16.5 to pick a
maximum-value solution S1 that fits in the first knapsack, and
then use it again on the remaining items to pick a maximum-
value solution S2 that fits in the second knapsack.

(2) Use the Knapsack algorithm to pick a maximum-value solu-
tion S that would fit in a knapsack with capacity C1 +C2, then
partition S arbitrarily into two sets S1 and S2 with total sizes
at most C1 and C2, respectively.

Which of the following statements are true? (Choose all that apply.)

a) Algorithm (1) is guaranteed to produce an optimal solution to
the double-knapsack problem but algorithm (2) is not.

26The Fibonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, . . ., with
each successive number defined as the sum of the previous two. The nth Fibonacci
number is very closely approximated by (�n)/

p
5, where � = 1.618 . . . is the

golden ratio. Thus, the lower bound proved in this problem is considerably larger
than the bound of 2n/2 = (

p
2)n = (1.414 . . .)n from the solution to Quiz 16.3.

Problems 135

b) Algorithm (2) is guaranteed to produce an optimal solution to
the double-knapsack problem but algorithm (1) is not.

c) Algorithm (1) is guaranteed to produce an optimal solution to
the double-knapsack problem when C1 = C2.

d) Neither algorithm is guaranteed to produce an optimal solution
to the double-knapsack problem.

Challenge Problems

Problem 16.6 (H) This problem outlines an approach to solving
the WIS problem in graphs more complicated than paths. Consider
an arbitrary undirected graph G = (V,E) with nonnegative vertex
weights, and an arbitrary vertex v 2 V with weight wv. Obtain H
from G by removing v and its incident edges. Obtain K from H by
removing v’s neighbors and their incident edges:

v

G H K

Let WG, WH , and WK denote the total weight of an MWIS in G, H ,
and K, respectively, and consider the formula

WG = max{WH ,WK + wv}.

Which of the following statements are true? (Choose all that apply.)

a) The formula is not always correct in path graphs.

b) The formula is always correct in path graphs but not always
correct in trees (that is, in connected acyclic graphs).

c) The formula is always correct in trees but not always correct in
arbitrary graphs.

d) The formula is always correct in arbitrary graphs.

e) The formula leads to a linear-time dynamic programming algo-
rithm for the WIS problem in trees.

f) The formula leads to a linear-time dynamic programming algo-
rithm for the WIS problem in arbitrary graphs.

136 Introduction to Dynamic Programming

Problem 16.7 (H) This problem describes four generalizations of
the knapsack problem. In each, the input consists of item values
v1, v2, . . . , vn, item sizes s1, s2, . . . , sn, and additional problem-specific
data (all positive integers). Which of these generalizations can be
solved by dynamic programming in time polynomial in the number n
of items and the largest number M that appears in the input? (Choose
all that apply.)

a) Given a positive integer capacity C, compute a subset of items
with the maximum-possible total value subject to having total
size exactly C. (If no such set exists, the algorithm should
correctly detect that fact.)

b) Given a positive integer capacity C and an item budget k 2
{1, 2, . . . , n}, compute a subset of items with the maximum-
possible total value subject to having total size at most C and

at most k items.

c) The double-knapsack problem from Problem 16.5: Given ca-
pacities C1 and C2 of two knapsacks, compute disjoint subsets
S1, S2 of items with the maximum-possible total value

P
i2S1

vi+P
i2S2

vi, subject to the knapsack capacities:
P

i2S1
si C1 andP

i2S2
si C2.

d) Given capacities C1, C2, . . . , Cm of m knapsacks, where m could
be as large as n, compute disjoint subsets S1, S2, . . . , Sm of items
with the maximum-possible total value

P
i2S1

vi+
P

i2S2
vi+· · ·+P

i2Sm
vi, subject to the knapsack capacities:

P
i2S1

si C1,P
i2S2

si C2, . . . , and
P

i2Sm
si Cm.

Programming Problems

Problem 16.8 Implement in your favorite programming lan-
guage the WIS and WIS Reconstruction algorithms. (See www.
algorithmsilluminated.org for test cases and challenge data sets.)

Problem 16.9 Implement in your favorite programming language
the Knapsack and Knapsack Reconstruction algorithms. (See www.
algorithmsilluminated.org for test cases and challenge data sets.)

www.algorithmsilluminated.org
www.algorithmsilluminated.org
www.algorithmsilluminated.org
www.algorithmsilluminated.org

	Preface
	Introduction to Greedy Algorithms
	The Greedy Algorithm Design Paradigm
	A Scheduling Problem
	Developing a Greedy Algorithm
	Proof of Correctness
	Problems

	Huffman Codes
	Codes
	Codes as Trees
	Huffman's Greedy Algorithm
	Proof of Correctness
	Problems

	Minimum Spanning Trees
	Problem Definition
	Prim's Algorithm
	Speeding Up Prim's Algorithm via Heaps
	Prim's Algorithm: Proof of Correctness
	Kruskal's Algorithm
	Speeding Up Kruskal's Algorithm via Union-Find
	Kruskal's Algorithm: Proof of Correctness
	Application: Single-Link Clustering
	Problems

	Introduction to Dynamic Programming
	The Weighted Independent Set Problem
	A Linear-Time Algorithm for WIS in Paths
	A Reconstruction Algorithm
	The Principles of Dynamic Programming
	The Knapsack Problem
	Problems

	Advanced Dynamic Programming
	Sequence Alignment
	Optimal Binary Search Trees
	Problems

	Shortest Paths Revisited
	Shortest Paths with Negative Edge Lengths
	The Bellman-Ford Algorithm
	The All-Pairs Shortest Path Problem
	The Floyd-Warshall Algorithm
	Problems

	Epilogue: A Field Guide to Algorithm Design
	Hints and Solutions
	Index

